翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

industrial fermentation : ウィキペディア英語版
industrial fermentation

Industrial fermentation is the intentional use of fermentation by microorganisms such as bacteria and fungi to make products useful to humans. Fermented products have applications as food as well as in general industry. Some commodity chemicals, such as acetic acid, citric acid, and ethanol are made by fermentation. The rate of fermentation depends on the concentration of microorganisms, cells, cellular components, and enzymes as well as temperature, pH. and for aerobic fermentation oxygen. Product recovery frequently involves the concentration of the dilute solution. Nearly all commercially produced enzymes, such as lipase, invertase and rennet, are made by fermentation with genetically modified microbes. In some cases, production of biomass itself is the objective, as in the case of baker's yeast and lactic acid bacteria starter cultures for cheesemaking. In general, fermentations can be divided into four types:
*Production of biomass (viable cellular material)
*Production of extracellular metabolites (chemical compounds)
*Production of intracellular components (enzymes and other proteins)
*Transformation of substrate (in which the transformed substrate is itself the product)
These types are not necessarily disjoint from each other, but provide a framework for understanding the differences in approach. The organisms used may be bacteria, yeasts, molds, animal cells, or plant cells. Special considerations are required for the specific organisms used in the fermentation, such as the dissolved oxygen level, nutrient levels, and temperature.
==General process overview==
In most industrial fermentations, the organisms are submerged in a liquid medium; in others, such as the fermentation of cocoa beans, coffee cherries, and miso, fermentation takes place on the moist surface of the medium.
There are also industrial considerations related to the fermentation process. For instance, to avoid biological process contamination, the fermentation medium, air, and equipment are sterilized. Foam control can be achieved by either mechanical foam destruction or chemical anti-foaming agents. Several other factors must be measured and controlled such as pressure, temperature, agitator shaft power, and viscosity. An important element for industrial fermentations is scale up. This is the conversion of a laboratory procedure to an industrial process. It is well established in the field of industrial microbiology that what works well at the laboratory scale may work poorly or not at all when first attempted at large scale. It is generally not possible to take fermentation conditions that have worked in the laboratory and blindly apply them to industrial-scale equipment. Although many parameters have been tested for use as scale up criteria, there is no general formula because of the variation in fermentation processes. The most important methods are the maintenance of constant power consumption per unit of broth and the maintenance of constant volumetric transfer rate.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「industrial fermentation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.